Tunable Hot-Electron Transfer Within a Single Core-Shell Nanowire
نویسندگان
چکیده
منابع مشابه
Shape-tunable core-shell microparticles.
Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of vary...
متن کاملCore-shell silicon nanowire solar cells
Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded...
متن کاملCore/Shell Nanowire Arrays with Enhanced Photoactivity
There are currently great needs to develop low-cost inorganic materials that can efficiently perform solar water splitting as photoelectrolysis of water into hydrogen and oxygen has significant potential to provide clean energy. We investigate the Si/TiO2 nanowire heterostructures to determine their potential for the photooxidation of water. We observed that highly dense Si/TiO2 core/shell nano...
متن کاملAmorphous Silicon Core-shell Nanowire Solar Cells
Nanostructures such as nanoparticles and nanowires have been demonstrated as powerful tools to improve light absorption[1-4], to enable low temperature process[5], to demonstrate multi-exciton generation[6], and to decouple the absorption depth and carrier diffusion length[7, 8]. Here we demonstrated the first amorphous silicon coreshell nanowire solar cells, which can be fabricated through a l...
متن کاملTunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures
The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs) with a diameter of 1.1-2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2011
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.107.156802